
CSI 33 Midterm Exam In-class Practice

Part 1 Answer True/False and Multiple Choice questions

1. Which of the following is a (n) operation?
(a) Sorting a list with Selection sort
(b) Finding the ith item in a Python list.
(c) Re-assigning the element at the end of a Python list.
(d) Deleting an item from the middle of a Python list.

Answer: (d)
Explanation: Selection Sort is (n2) operation;
random access in Python list (finding ith item, myList[i]) is (1) operation;
re-assigning an element at the end of a Python list (myList[len(myList)-1] = ...) is also (1)
operation;

When a middle element is deleted, the “right half” of the values, about
n
2

 of them, must be shifted one

space to the left, which gives (n) running time.

2. Which of the following is not true of Python dictionaries?
(a) They are implemented as hash tables. (c) Values must be immutable.
(b) Lookup is very efficient. (d) All of the above are true.

Answer: (c)
Explanation: Indeed, Python dictionaries are implemented as hash tables, the lookup, insertion, deletion are
all (n) operations. Keys must be immutable (as this is the way to “access” the associated value with it).
Values can me mutable.

3. How many iterations will the while loop of the Binary Search do when searching for 21 in the sequence
[1, 5, 12, 14, 17, 21, 28]? Use the Binary Search algorithm I presented in class.

 (a) 5 (b) 4 (c) 3 (d) 2

Answer: (d)
Explanation: look at the algorithm of the Binary Search for the key information:

1) the middle value accessed by the index ⌊high+ low
2 ⌋ , where low = 0 and high = len(myList) – 1

initially
2) the while loop stops as soon as low > high
3) when the middle element checked for equality with the target value:
- if it is equal, then the index is returned, and
- if not, left half (stepping one left for the high index) or the right half (stepping one to the right for the low
index) is “chosen”
21 is present in the sequence, therefore, the exit condition from the loop will be the location of this element.

We will begin by selecting index ⌊6+0
2 ⌋=3 , the value at the 3rd position is 14, not 21.

Since 21 is greater than 14, the low index is adjusted to low = 3+1 = 4.

2nd iteration of the while loop: the “middle index” is ⌊6+4
2 ⌋=5 , the value at the 5th position is 21. It is the

target value, therefore, the position 5 is returned and the while loop is terminated.
The Binary Search algorithm performed 2 iterations of the while loop.

Here is what you can present as an explanation, if asked for:

1 5 12 14 17 21 28

1st iteration: mid = (0+6)//2 = 3, not it
21 > 14 or 14 < 21, hence low = 3+1 = 4

2nd iteration: mid = (4+6)//2 = 5, found it!
return 5

Part 2. Answer short-answer questions

1. Consider the following code fragment:

from ListNode import *

z = ListNode(34)
y = ListNode(25,z)
x = ListNode(12,y)
t = ListNode(20,y)

What will be produced by this code fragment (draw a pictorial representation)?

For your reference, the definition of the ListNode class:

… skipped

Answer: graphical

 x y z

 t

 34 None 25 12

 20

2. Give a theta analysis of the time efficiency of the following code fragment. Provide explanations.

n = int(input("Enter a positive integer:")) 3 steps
myList = [] 1 step
while n > 1: n/3 iterations, 1 step for comparison

myList.insert(0, n) insertion is (n) operation, but see
n -= 3 1 step more details below.

More details: note that initially the list is empty, and the next element is inserted into the “head” position (0th

position), so we cannot claim that at each iteration the list has n elements and all of them are shifted 1 space
to the right.
So it is better to see what is going on at each iteration from the very beginning:
1st iteration, the value of n is inserted into an empty list : 1 step
2nd iteration: the value of myList[0] is shifted one space to the right, and the n-3 is placed into the 0th
position: 2 steps
3rd iteration: the values of myList[1] and the myList[0] are shifted one position to the right, and the value of
n-6 is inserted into the 0th position: 3 steps
4th iteration: the values of myList[2], myList[1], and myList[0] are shifted to the right, and the value of n-9 is
inserted into the 0th position: 4 steps
…

the loop will stop when n-3k ≤ 1… so there will be about
n
3

 iterations:

1 step + 2 steps +3 steps + 4 steps + … +
n
3

steps = arithmetic sequence =
(1+ n

3)(n
3)

2
=…=n

6
+ n2

6

Hence T(n) = 4+2⋅(n
6
+ n2

6)=4+ n
3
+ n2

3
=Θ(n2)

Answer: T(n) =  (n2)

3. Give pictorial representation of the Python's memory during execution of the code given below.
 Show the result of print statements.

def func(a,b,c):
a.append(c)
b = b + ", world!"
c = c/5
a = [1,2,3]
print(a,b,c)

def main():
l = ['a','b']
d = "Hello"
k = 25
func(l,d,k)
print(l,d,k)

a

b

c

What will be printed:
[1,2,3] Hello, world! 5
[‘a’,’b’, 25] Hello 25

l

d

k

 Hello

 25

 a b 25

 1 2 3

 Hello, world!

 5

list, mutable

list, mutable

string, immutable

string, immutable

integer, immutable

integer, immutable

Part III.
Here is the running time for each of four requested operations:

operations (a) an unordered Python list (b) a sorted Python list (c) a Python dictionary
(elements of the set are
keys, None or True are
values)

add (n)
we need to check if the

element is already in the set,
and since the list is

unordered, we will have to
apply linear search

(log n)
since the elements are

ordered, we need to find a
position to insert the new

record, search can be done
with log n time (recall
binary search on sorted

arrays), then append
operation on average takes

(1) time

(1)
almost all basic operations
on dictionaries are (1),

since hash tables with
hashing function are used.

remove (n)
operations of insertion and

deletion are (n) for Python's
lists + we need to find an

element, and shift all the ones
to the right of it one space to

the left

(n)
first we will need to locate
the element with the given
name ((log n) operation),
then we will need to delete

is ((n) operation on
Pyton's lists), hence the

result is (n)

(1)
using hashing function the
record will be accessed in
constant time, and deleted

clear (1)
if we reassign the data

attribute to empty list, e.g.
data=[]

(1)
if we reassign the data

attribute to empty list, e.g.
data=[]

(n)
either deleting all elements
or changing the values of

the keys to None

__contains__ (n)
since the list is unordered, we

will have to apply linear
search

(log n)
search can be done with log
n time (recall binary search

on sorted arrays)

(1)
one of the basic operations

of Python dictionaries

intersection (nm)
|set1| = n and |set2| = m

Every element from the set1
will be “searched for” in set2

(n log m)
|set1| = n and |set2| = m

Every element from the set1
will be “searched for” in
set2, w can use binary

search

If n is number of elements
in set1 and m is the number
of elements of set2, and n <

m, then we say the
asymptotic running time is

(n)
|set1| = n and |set2| = m, and

n <= m

intersection
the idea is to grab the smaller size set and check if its elements are present in the other, if present, then the

element is added to the new set. Worse case scenario – all the elements are to be added

union (nm)
We will start by adding all the

elements of one set to the
new set; then we will be

(n+m)
Two sets are ordered, so we

compare the two first
elements of the sets, and

(n+m)
All the keys from one

dictionary are added to the
new dictionary, then each

grabbing one by one elements
from the second set, checking
if its presence in the new set
– if it is not present, we will
add it, if it is – we will move

on to the next.

grab the smallest – add it to
the new set; then we
compare the “next”

front/first elements : take
the smallest and add it to

the new set, etc.

key from the second
dictionary is checked for

presence in the new
dictionary: if is already

there, don’t add it,
otherwise, add it.

difference (nm)
Set1-Set2: grab an element

from Set1 (n elements): if it is
not in Set2 (m elements to

compare to), add it to the new
set, and so forth.

(nm)
Set1-Set2: grab an element
from Set1 (n elements): if it
is not in Set2 (m elements

to compare to), add it to the
new set, and so forth.

(n)
Set1-Set2: grab an element
from Set1 (n elements): if it

is not in Set2 ((1)
operation), add it to the new

set, and so forth.

About operations and their cost on Python's list see pages 99
About operations and their cost on dictionaries see pages 94-95

